

Introduction to Mathematical Quantum Theory

Text of the Exercises

– 19.05.2020 –

Teacher: Prof. Chiara Saffirio

Assistant: Dr. Daniele Dimonte – daniele.dimonte@unibas.ch

Exercise 1

Let $\mathcal{H} = L^2(\mathbb{R}^2)$. Let \tilde{H} be defined as

$$\tilde{H} := -\frac{1}{2}(\Delta_x + \Delta_y) + \frac{1}{2}(x^2 + y^2) - \lambda xy \quad (1)$$

with $D(\tilde{H}) = C_c^\infty(\mathbb{R}^2)$.

Prove that if $\lambda \in (-1, 1)$ then \tilde{H} is essentially self adjoint and study the spectrum of the closure of \tilde{H} .

Hint: Prove that, with the right change of variables $(x, y) \rightarrow (w, z)$, $\tilde{H} = H_w + H_z$ with H_w only depending on w and H_z only depending on z .

Exercise 2

Let A be a normal matrix (meaning that $AA^* = A^*A$) and p a polynomial in two variables. Show by example that an eigenvector for $p(A, A^*)$ is not necessarily an eigenvector for A .

Remark: Even if eigenvectors of $p(A, A^*)$ do not correspond to eigenvectors of A , the spectrum does, in the sense that

$$\sigma(p(A, A^*)) = \{p(\lambda, \lambda^*) \mid \lambda \in \sigma(A)\}. \quad (2)$$

Exercise 3

Let $I := [0, 1]$ and consider $\mathcal{H} = L^2(I)$. Define the operator $H := -\Delta$ with domain¹ $D(H) := H^2(I) \cap C_{\text{per}}^1(I)$. Prove that H is self-adjoint and exhibit its spectral measure explicitly.

Exercise 4

Let \mathcal{H} be an Hilbert space and $A_+, A_- \in \mathcal{B}(\mathcal{H})$ such that

$$[A_\pm, A_\pm^*] = \text{id}, \quad (3)$$

$$[A_+, A_-] = [A_+, A_-^*] = 0. \quad (4)$$

¹This definition makes sense, because we know that for any function $\psi \in H^2(I)$ we have that there is a function $\tilde{\psi} \in C^1(I)$ that coincides almost everywhere with ψ . The definition of the domain is then the set of functions $\psi \in H^2(I)$ such that the function $\tilde{\psi}$ is periodic with derivative which is periodic.

Let moreover $\eta, \zeta \in \mathbb{R}$, with $\eta > \zeta \geq 0$. Define

$$H := \eta (A_+^* A_+ + A_-^* A_-) + \zeta (A_+^* A_-^* + A_+ A_-). \quad (5)$$

Recall that if $\theta = \frac{1}{2} \operatorname{arctanh} \left(\frac{\zeta}{\eta} \right)$, $\alpha = \sqrt{\eta^2 - \zeta^2}$, $\beta = \sqrt{\eta^2 - \zeta^2} - \eta$ and C_+ and C_- are defined as

$$C_{\pm} := \cosh(\theta) A_{\pm} + \sinh(\theta) A_{\mp}^* \quad (6)$$

we get

$$[C_{\pm}, C_{\pm}^*] = \operatorname{id}, \quad (7)$$

$$[C_+, C_-] = [C_+, C_-^*] = 0, \quad (8)$$

$$H = \alpha (C_+^* C_+ + C_-^* C_-) + \beta. \quad (9)$$

a Consider $X := A_+^* A_-^* - A_+ A_-$. Prove that X is skew-adjoint, meaning that $X^* = -X$.

b For any $t \in \mathbb{R}$ consider $U(t) := e^{-tX}$. Prove that $\{U(t)\}_{t \in \mathbb{R}}$ is a strongly continuous one-parameter unitary group such that

$$U(t) A_{\pm} U(-t) = \cosh(t) A_{\pm} + \sinh(t) A_{\mp}^*. \quad (10)$$

Hint: Consider for any $\psi, \varphi \in \mathcal{H}$ the function $f : \mathbb{R} \rightarrow \mathbb{R}$ defined as

$$f_{\pm}(t) := \langle \psi, U(t) A_{\pm} U(-t) \varphi \rangle. \quad (11)$$

Prove that f satisfies a closed second order differential equation and deduce (10).

c Suppose that there is a complete orthonormal system $\{\varphi_n\}_{n \in \mathbb{N}}$ for \mathcal{H} such that $A_{\pm}^* A_{\pm} \varphi_n = \epsilon_n^{\pm} \varphi_n$, with $\epsilon_n^{\pm} \in \mathbb{R}$. Prove that there exist a complete orthonormal system $\{\psi_n\}_{n \in \mathbb{N}}$ for \mathcal{H} such that

$$H \psi_n = [\alpha (\epsilon_n^+ + \epsilon_n^-) + \beta] \psi_n. \quad (12)$$